Kronecker products of paths and cycles: Decomposition, factorization and bi-pancyclicity

نویسنده

  • Pranava K. Jha
چکیده

Let G x H denote the Kronecker product of graphs G and H. Principal results are as follows: (a) If m is even and n 0 (mod 4), then one component of P,.+l x P,+1, and each component of each of CA x Pn+l, Pm+l x (7, and Cm x C, are edge decomposable into cycles of uniform length rs, where r and s are suitable divisors of m and n, respectively, (b) if m and n are both even, then each component of each of Cm X P,+I, P,.+l X C, and C,. × C. is edge-decomposable into cycles of uniform length ms, where s is a suitable divisor of n, (c) C2i+1 × C2j+l is factorizable into shortest odd cycles, (d) each component C4i x C4j is factorizable into four-cycles, and (e) each component of Cmx C4j admits of a bi-pancyclic ordering. AMS Classification: 05C38; 05C45; 05C70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paths, Trees and Cycles in Tournaments

We survey results on paths, trees and cycles in tournaments. The main subjects are hamiltonian paths and cycles, vertex and arc disjoint paths with prescribed endvertices, arc-pancyclicity, oriented paths, trees and cycles in tournaments. Several unsolved problems are included.

متن کامل

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

Combining Kronecker Product Approximation with Discrete Wavelet Transforms to Solve Dense, Function-Related Linear Systems

A new solution technique is proposed for linear systems with large dense matrices of a certain class including those that come from typical integral equations of potential theory. This technique combines Kronecker product approximation and wavelet sparsification for the Kronecker product factors. The user is only required to supply a procedure for computation of each entry of the given matrix. ...

متن کامل

Characterization of signed paths and cycles admitting minus dominating function

If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.

متن کامل

Long Cycles and Long Paths in the Kronecker Product of a Cycle, a Tree

Let C m T denote the Kronecker product of a cycle C m and a tree T. If m is odd, then C m T is connected, otherwise this graph consists of two isomorphic components. This paper presents a scheme which constructs a long cycle in each component of C m T, where T satisses certain degree constraints. The cycle thus traced is shown to be a dominating set, and in some cases, a vertex cover of that co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 182  شماره 

صفحات  -

تاریخ انتشار 1998